Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
J Nutr ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582385

RESUMO

BACKGROUND: Docosahexaenoic acid (DHA) controls the biophysical organization of plasma membrane sphingolipid/cholesterol-enriched lipid rafts to exert anti-inflammatory effects, particularly in lymphocytes. However, the impact of DHA on the spatial arrangement of alveolar macrophage lipid rafts and inflammation is unknown. OBJECTIVES: The primary objective was to determine how DHA controls lipid raft organization and function of alveolar macrophages. As proof-of-concept, we also investigated DHA's anti-inflammatory effects on select pulmonary inflammatory markers with a murine influenza model. METHODS: MH-S cells, an alveolar macrophage line, were treated with 50 µM DHA or vehicle control and were used to study plasma membrane molecular organization with fluorescence-based methods. Biomimetic membranes and coarse grain molecular dynamic (MD) simulations were employed to investigate how DHA mechanistically controls lipid raft size. qRT-PCR, mass spectrometry, and ELISAs were used to quantify downstream inflammatory signaling transcripts, oxylipins, and cytokines, respectively. Lungs from DHA-fed influenza-infected mice were analyzed for specific inflammatory markers. RESULTS: DHA increased the size of lipid rafts while decreasing the molecular packing of the MH-S plasma membrane. Adding a DHA-containing phospholipid to a biomimetic lipid raft-containing membrane led to condensing, which was reversed with the removal of cholesterol. MD simulations revealed DHA nucleated lipid rafts by driving cholesterol and sphingomyelin into rafts. Downstream of the plasma membrane, DHA lowered the concentration of select inflammatory transcripts, oxylipins, and IL-6 secretion. DHA lowered pulmonary Il6 and Tnf-α mRNA expression and increased anti-inflammatory oxylipins of influenza-infected mice. CONCLUSIONS: The data suggest a model in which the localization of DHA acyl chains to nonrafts is driving sphingomyelin and cholesterol molecules into larger lipid rafts, which may serve as a trigger to impede signaling and lower inflammation. These findings also identify alveolar macrophages as a target of DHA and underscore the anti-inflammatory properties of DHA for lung inflammation.

4.
Nat Rev Endocrinol ; 20(3): 136-148, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38129700

RESUMO

Obesity is associated with a wide range of complications, including type 2 diabetes mellitus, cardiovascular disease, hypertension and nonalcoholic fatty liver disease. Obesity also increases the incidence and progression of cancers, autoimmunity and infections, as well as lowering vaccine responsiveness. A unifying concept across these differing diseases is dysregulated immunity, particularly inflammation, in response to metabolic overload. Herein, we review emerging mechanisms by which obesity drives inflammation and autoimmunity, as well as impairing tumour immunosurveillance and the response to infections. Among these mechanisms are obesity-associated changes in the hormones that regulate immune cell metabolism and function and drive inflammation. The cargo of extracellular vesicles derived from adipose tissue, which controls cytokine secretion from immune cells, is also dysregulated in obesity, in addition to impairments in fatty acid metabolism related to inflammation. Furthermore, an imbalance exists in obesity in the biosynthesis and levels of polyunsaturated fatty acid-derived oxylipins, which control a range of outcomes related to inflammation, such as immune cell chemotaxis and cytokine production. Finally, there is a need to investigate how obesity influences immunity using innovative model systems that account for the heterogeneous nature of obesity in the human population.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Inflamação/metabolismo , Citocinas
5.
Nutrients ; 15(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38004202

RESUMO

Diet-induced obesity impairs mitochondrial respiratory responses in tissues that are highly metabolically active, such as the heart. However, less is known about the impact of obesity on the respiratory activity of specific cell types, such as splenic B cells. B cells are of relevance, as they play functional roles in obesity-induced insulin resistance, inflammation, and responses to infection. Here, we tested the hypothesis that high-fat-diet (HFD)-induced obesity could impair the mitochondrial respiration of intact and permeabilized splenic CD19+ B cells isolated from C57BL/6J mice and activated ex vivo with lipopolysaccharide (LPS). High-resolution respirometry was used with intact and permeabilized cells. To reveal potential mechanistic targets by which HFD-induced obesity dysregulates B cell mitochondria, we conducted proteomic analyses and 3D serial block face scanning electron microscopy (SBFEM). High-resolution respirometry revealed that intact LPS-stimulated B cells of obese mice, relative to controls, displayed lower ATP-linked, as well as maximal uncoupled, respiration. To directly investigate mitochondrial function, we used permeabilized LPS-stimulated B cells, which displayed increased H2O2 emission and production with obesity. We also examined oxidative phosphorylation efficiency simultaneously, which revealed that oxygen consumption and ATP production were decreased in LPS-stimulated B cells with obesity relative to controls. Despite minimal changes in total respiratory complex abundance, in LPS-stimulated B cells of obese mice, three of the top ten most downregulated proteins were all accessory subunits of respiratory complex I. SBFEM showed that B cells of obese mice, compared to controls, underwent no change in mitochondrial cristae integrity but displayed increased mitochondrial volume that was linked to bioenergetic function. Collectively, these results establish a proof of concept that HFD-induced obesity dysregulates the mitochondrial bioenergetic metabolism of activated splenic B cells.


Assuntos
Dieta Hiperlipídica , Resistência à Insulina , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Lipopolissacarídeos/metabolismo , Proteômica , Peróxido de Hidrogênio/metabolismo , Camundongos Obesos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Obesidade/metabolismo , Trifosfato de Adenosina/metabolismo
6.
Mol Psychiatry ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993501

RESUMO

Long-chain polyunsaturated fatty acids (LC-PUFAs) are obtained from diet or derived from essential shorter-chain fatty acids, and are crucial for brain development and functioning. Fundamentally, LC-PUFAs' neurobiological effects derive from their physicochemical characteristics, including length and double bond configuration, which differentiate LC-PUFA species and give rise to functional differences between n(omega)-3 and n-6 LC-PUFAs. LC-PUFA imbalances are implicated in psychiatric disorders, including major depression and suicide risk. Dietary intake and genetic variants in enzymes involved in biosynthesis of LC-PUFAs from shorter chain fatty acids influence LC-PUFA status. Domains impacted by LC-PUFAs include 1) cell signaling, 2) inflammation, and 3) bioenergetics. 1) As major constituents of lipid bilayers, LC-PUFAs are determinants of cell membrane properties of viscosity and order, affecting lipid rafts, which play a role in regulation of membrane-bound proteins involved in cell-cell signaling, including monoaminergic receptors and transporters. 2) The n-3:n-6 LC-PUFA balance profoundly influences inflammation. Generally, metabolic products of n-6 LC-PUFAs (eicosanoids) are pro-inflammatory, while those of n-3 LC-PUFAs (docosanoids) participate in the resolution of inflammation. Additionally, n-3 LC-PUFAs suppress microglial activation and the ensuing proinflammatory cascade. 3) N-3 LC-PUFAs in the inner mitochondrial membrane affect oxidative stress, suppressing production of and scavenging reactive oxygen species (ROS), with neuroprotective benefits. Until now, this wealth of knowledge about LC-PUFA biomechanisms has not been adequately tapped to develop translational studies of LC-PUFA clinical effects in humans. Future studies integrating neurobiological mechanisms with clinical outcomes may suggest ways to identify depressed individuals most likely to respond to n-3 LC-PUFA supplementation, and mechanistic research may generate new treatment strategies.

7.
Toxicol Sci ; 196(2): 141-151, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37740395

RESUMO

Inhaled toxicants drive the onset of and exacerbate preexisting chronic pulmonary diseases, however, the biological mechanisms by which this occurs are largely unknown. Exposure to inhaled toxicants, both environmental and occupational, drives pulmonary inflammation and injury. Upon activation of the inflammatory response, polyunsaturated fatty acids (PUFAs) are metabolized into predominately proinflammatory lipid mediators termed eicosanoids which recruit immune cells to the site of injury, perpetuating inflammation to clear the exposed toxicants. Following inflammation, lipid mediator class-switching occurs, a process that leads to increased metabolism of hydroxylated derivates of PUFAs. These mediators, which include mono-hydroxylated PUFA derivatives and specialized proresolving lipid mediators, initiate an active process of inflammation resolution by inhibiting the inflammatory response and activating resolution pathways to return the tissue to homeostasis. Exposure to inhaled toxicants leads to alterations in the synthesis of these proinflammatory and proresolving lipid mediator pathways, resulting in greater pulmonary inflammation and injury, and increasing the risk for the onset of chronic lung diseases. Recent studies have begun utilizing supplementation of PUFAs and their metabolites as potential therapeutics for toxicant-induced pulmonary inflammation and injury. Here we will review the current understanding of the lipid mediators in pulmonary inflammation and resolution as well as the impact of dietary fatty acid supplementation on lipid mediator-driven inflammation following air pollution exposure.


Assuntos
Pneumopatias , Pneumonia , Humanos , Metabolismo dos Lipídeos , Pulmão/metabolismo , Inflamação/metabolismo , Ácidos Graxos Insaturados/metabolismo , Pneumonia/metabolismo , Eicosanoides/metabolismo , Pneumopatias/induzido quimicamente , Mediadores da Inflamação/metabolismo
8.
Genome Med ; 15(1): 52, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37461045

RESUMO

BACKGROUND: Metabolic pathways are related to physiological functions and disease states and are influenced by genetic variation and environmental factors. Hispanics/Latino individuals have ancestry-derived genomic regions (local ancestry) from their recent admixture that have been less characterized for associations with metabolite abundance and disease risk. METHODS: We performed admixture mapping of 640 circulating metabolites in 3887 Hispanic/Latino individuals from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Metabolites were quantified in fasting serum through non-targeted mass spectrometry (MS) analysis using ultra-performance liquid chromatography-MS/MS. Replication was performed in 1856 nonoverlapping HCHS/SOL participants with metabolomic data. RESULTS: By leveraging local ancestry, this study identified significant ancestry-enriched associations for 78 circulating metabolites at 484 independent regions, including 116 novel metabolite-genomic region associations that replicated in an independent sample. Among the main findings, we identified Native American enriched genomic regions at chromosomes 11 and 15, mapping to FADS1/FADS2 and LIPC, respectively, associated with reduced long-chain polyunsaturated fatty acid metabolites implicated in metabolic and inflammatory pathways. An African-derived genomic region at chromosome 2 was associated with N-acetylated amino acid metabolites. This region, mapped to ALMS1, is associated with chronic kidney disease, a disease that disproportionately burdens individuals of African descent. CONCLUSIONS: Our findings provide important insights into differences in metabolite quantities related to ancestry in admixed populations including metabolites related to regulation of lipid polyunsaturated fatty acids and N-acetylated amino acids, which may have implications for common diseases in populations.


Assuntos
Estudo de Associação Genômica Ampla , Hispânico ou Latino , Espectrometria de Massas em Tandem , Humanos , População Negra/genética , Genoma Humano , Estudo de Associação Genômica Ampla/métodos , Hispânico ou Latino/genética , Polimorfismo de Nucleotídeo Único , Indígena Americano ou Nativo do Alasca/genética , Metabolismo/genética , Grupos Populacionais/etnologia , Grupos Populacionais/genética
10.
Curr Opin Clin Nutr Metab Care ; 26(3): 284-287, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36943155

RESUMO

PURPOSE OF REVIEW: A central goal in the study of long chain n-3 polyunsaturated fatty acids (PUFA) is to translate findings from the basic sciences to the population level to improve human health and prevent chronic diseases. A tenet of this vision is to think in terms of precision medicine and nutrition, that is, stratification of individuals into differing groups that will have different needs across the lifespan for n-3 PUFAs. Therefore, there is a critical need to identify the sources of heterogeneity in the human population in the dietary response to n-3 PUFA intervention. RECENT FINDINGS: We briefly review key sources of heterogeneity in the response to intake of long chain n-3 PUFAs. These include background diet, host genome, composition of the gut microbiome, and sex. We also discuss the need to integrate data from newer rodent models (e.g. population-based approaches), multi -omics, and analyses of big data using machine learning and data-driven cluster analyses. SUMMARY: Accounting for vast heterogeneity in the human population, particularly with the use of big data integrated with preclinical evidence, will drive the next generation of precision nutrition studies and randomized clinical trials with long-chain n-3 PUFAs.


Assuntos
Ácidos Graxos Ômega-3 , Humanos , Dieta , Ácidos Graxos Insaturados , Estado Nutricional , Ácidos Graxos
11.
Biophys J ; 122(6): 1130-1139, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36840353

RESUMO

Long-chain polyunsaturated fatty acids (PUFAs) are prone to nonenzymatic oxidation in response to differing environmental stressors and endogenous cellular sources. There is increasing evidence that phospholipids containing oxidized PUFA acyl chains control the inflammatory response. However, the underlying mechanism(s) of action by which oxidized PUFAs exert their functional effects remain unclear. Herein, we tested the hypothesis that replacement of 1-palmitoyl-2-arachidonyl-phosphatidylcholine (PAPC) with oxidized 1-palmitoyl-2-arachidonyl-phosphatidylcholine (oxPAPC) regulates membrane architecture. Specifically, with solid-state 2H NMR of biomimetic membranes, we investigated how substituting oxPAPC for PAPC modulates the molecular organization of liquid-ordered (Lo) domains. 2H NMR spectra for bilayer mixtures of 1,2-dipalmitoylphosphatidylcholine-d62 (an analog of DPPC deuterated throughout sn-1 and -2 chains) and cholesterol to which PAPC or oxPAPC was added revealed that replacing PAPC with oxPAPC disrupted molecular organization, indicating that oxPAPC does not mix favorably in a tightly packed Lo phase. Furthermore, unlike PAPC, adding oxPAPC stabilized 1,2-dipalmitoylphosphatidylcholine-d6-rich/cholesterol-rich Lo domains formed in mixtures with 1,2-dioleoylphosphatidylcholine while decreasing the molecular order within 1,2-dioleoylphosphatidylcholine-rich liquid-disordered regions of the membrane. Collectively, these results suggest a mechanism in which oxPAPC stabilizes Lo domains-by disordering the surrounding liquid-disordered region. Changes in the structure, and thereby functionality, of Lo domains may underly regulation of plasma membrane-based inflammatory signaling by oxPAPC.


Assuntos
Ácidos Graxos Insaturados , Membranas Artificiais , Fosfatidilcolinas , Fosfatidilcolinas/química , Ácidos Graxos Insaturados/química
12.
Toxicol Appl Pharmacol ; 462: 116381, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36681128

RESUMO

Damage associated molecular patterns (DAMPs) are molecules released from dead/dying cells following toxicant and/or environmental exposures that activate the immune response through binding of pattern recognition receptors (PRRs). Excessive production of DAMPs or failed clearance leads to chronic inflammation and delayed inflammation resolution. One category of DAMPs are oxidized phospholipids (oxPLs) produced upon exposure to high levels of oxidative stress, such as following ozone (O3) induced inflammation. OxPLs are bound by multiple classes of PRRs that include scavenger receptors (SRs) such as SR class B-1 (SR-BI) and toll-like receptors (TLRs). Interactions between oxPLs and PRRs appear to regulate inflammation; however, the role of SR-BI in oxPL-induced lung inflammation has not been defined. Therefore, we hypothesize that SR-BI is critical in protecting the lung from oxPL-induced pulmonary inflammation/injury. To test this hypothesis, C57BL/6J (WT) female mice were dosed with oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (oxPAPC) by oropharyngeal aspiration which increased pulmonary SR-BI expression. Following oxPAPC exposure, SR-BI deficient (SR-BI-/-) mice exhibited increased lung pathology and inflammatory cytokine/chemokine production. Lipidomic analysis revealed that SR-BI-/- mice had an altered pulmonary lipidome prior to and following oxPAPC exposure, which correlated with increased oxidized phosphatidylcholines (PCs). Finally, we characterized TLR4-mediated activation of NF-κB following oxPAPC exposure and discovered that SR-BI-/- mice had increased TLR4 mRNA expression in lung tissue and macrophages, increased nuclear p65, and decreased cytoplasmic IκBα. Overall, we conclude that SR-BI is required for limiting oxPAPC-induced lung pathology by maintaining lipid homeostasis, reducing oxidized PCs, and attenuating TLR4-NF-κB activation, thereby preventing excessive and persistent inflammation.


Assuntos
Fosfolipídeos , Pneumonia , Animais , Feminino , Camundongos , Proteínas de Transporte , Inflamação/induzido quimicamente , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/prevenção & controle , Receptores Depuradores/genética , Receptores Depuradores/metabolismo , Receptor 4 Toll-Like/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-36706677

RESUMO

Prohibitins (PHB1 and PHB2) are ubiquitously expressed proteins which play critical roles in multiple biological processes, and together form the ring-like PHB complex found in phospholipid-rich cellular compartments including lipid rafts. Recent studies have implicated PHB1 as a mediator of fatty acid transport as well as a membrane scaffold mediating B lymphocyte and mast cell signal transduction. However, the specific role of PHBs in the macrophage have not been characterized, including their role in fatty acid uptake and lipid raft-mediated inflammatory signaling. We hypothesized that the PHB complex regulates macrophage inflammatory signaling through the formation of lipid rafts. To evaluate our hypothesis, RAW 264.7 macrophages were transduced with shRNA against PHB1, PHB2, or scrambled control (Scr), and then stimulated with lipopolysaccharide (LPS) or tumor necrosis factor-alpha (TNF-α), which activate lipid raft-dependent receptor signaling (CD14/TLR4 and TNFR1, respectively). PHB1 knockdown was lethal, whereas PHB2 knockdown (PHB2kd), which also resulted in decreased PHB1 expression, led to attenuated nuclear factor-kappa-B (NF-κB) activation and subsequent cytokine and chemokine production. PHB2kd macrophages also had decreased cell surface TNFR1, CD14, TLR4, and lipid raft marker ganglioside GM1 at baseline and post-stimuli. Post-LPS, PHB2kd macrophages did not increase the concentration of cellular saturated, monounsaturated, and polyunsaturated fatty acids. This was accompanied by decreased lipid raft formation and modified plasma membrane molecular packing, further supporting the PHB complex's importance in lipid raft formation. Taken together, these data suggest a critical role for PHBs in regulating macrophage inflammatory signaling via maintenance of fatty acid composition and lipid raft structure. SUMMARY: Prohibitins are proteins found in phospholipid-rich cellular compartments, including lipid rafts, that play important roles in signaling, transcription, and multiple other cell functions. Macrophages are key cells in the innate immune response and the presence of membrane lipid rafts is integral to signal transduction, but the role of prohibitins in macrophage lipid rafts and associated signaling is unknown. To address this question, prohibitin knockdown macrophages were generated and responses to lipopolysaccharide and tumor necrosis factor-alpha, which act through lipid raft-dependent receptors, were analyzed. Prohibitin knockdown macrophages had significantly decreased cytokine and chemokine production, transcription factor activation, receptor expression, lipid raft assembly and membrane packing, and altered fatty acid remodeling. These data indicate a novel role for prohibitins in macrophage inflammatory signaling through regulation of fatty acid composition and lipid raft formation.


Assuntos
Proibitinas , Receptores Tipo I de Fatores de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Lipopolissacarídeos , Receptor 4 Toll-Like/metabolismo , Ácidos Graxos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais , Macrófagos , Citocinas/metabolismo , Membrana Celular/metabolismo , Microdomínios da Membrana/metabolismo , Fosfolipídeos/metabolismo , Quimiocinas/metabolismo
14.
J Infect Dis ; 227(1): 92-102, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-35975968

RESUMO

BACKGROUND: Obesity dysregulates immunity to influenza infection. Therefore, there is a critical need to investigate how obesity impairs immunity and to establish therapeutic approaches that mitigate the impact of increased adiposity. One mechanism by which obesity may alter immune responses is through changes in cellular metabolism. METHODS: We studied inflammation and cellular metabolism of peripheral blood mononuclear cells (PBMCs) isolated from individuals with obesity relative to lean controls. We also investigated if impairments to PBMC metabolism were reversible upon short-term weight loss following bariatric surgery. RESULTS: Obesity was associated with systemic inflammation and poor inflammation resolution. Unstimulated PBMCs from participants with obesity had lower oxidative metabolism and adenosine triphosphate (ATP) production compared to PBMCs from lean controls. PBMC secretome analyses showed that ex vivo stimulation with A/Cal/7/2009 H1N1 influenza led to a notable increase in IL-6 with obesity. Short-term weight loss via bariatric surgery improved biomarkers of systemic metabolism but did not improve markers of inflammation resolution, PBMC metabolism, or the PBMC secretome. CONCLUSIONS: These results show that obesity drives a signature of impaired PBMC metabolism, which may be due to persistent inflammation. PBMC metabolism was not reversed after short-term weight loss despite improvements in measures of systemic metabolism.


Assuntos
Cirurgia Bariátrica , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Adulto , Leucócitos Mononucleares , Influenza Humana/metabolismo , Obesidade/cirurgia , Obesidade/metabolismo , Inflamação/metabolismo , Redução de Peso
15.
J Lipid Res ; 63(10): 100267, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36028048

RESUMO

Obesity exacerbates inflammation upon lung injury; however, the mechanisms by which obesity primes pulmonary dysregulation prior to external injury are not well studied. Herein, we tested the hypothesis that obesity dysregulates pulmonary PUFA metabolism that is central to inflammation initiation and resolution. We first show that a high-fat diet (HFD) administered to C57BL/6J mice increased the relative abundance of pulmonary PUFA-containing triglycerides and the concentration of PUFA-derived oxylipins (particularly prostaglandins and hydroxyeicosatetraenoic acids), independent of an increase in total pulmonary PUFAs, prior to onset of pulmonary inflammation. Experiments with a genetic model of obesity (ob/ob) generally recapitulated the effects of the HFD on the pulmonary oxylipin signature. Subsequent pulmonary next-generation RNA sequencing identified complex and unique transcriptional regulation with the HFD. We found the HFD increased pathways related to glycerophospholipid metabolism and immunity, including a unique elevation in B cell differentiation and signaling. Furthermore, we conducted computational integration of lipidomic with transcriptomic data. These analyses identified novel HFD-driven networks between glycerophospholipid metabolism and B cell receptor signaling with specific PUFA-derived pulmonary oxylipins. Finally, we confirmed the hypothesis by demonstrating that the concentration of pulmonary oxylipins, in addition to inflammatory markers, were generally increased in mice consuming a HFD upon ozone-induced acute lung injury. Collectively, these data show that a HFD dysregulates pulmonary PUFA metabolism prior to external lung injury, which may be a mechanism by which obesity primes the lungs to respond poorly to infectious and/or inflammatory challenges.


Assuntos
Ácidos Graxos Ômega-3 , Lesão Pulmonar , Ozônio , Animais , Camundongos , Oxilipinas/metabolismo , Lipidômica , Ácidos Graxos Ômega-3/metabolismo , Transcriptoma , Camundongos Endogâmicos C57BL , Ácidos Graxos Insaturados/metabolismo , Obesidade/genética , Inflamação/genética , Inflamação/metabolismo , Triglicerídeos , Pulmão/metabolismo , Prostaglandinas , Ácidos Hidroxieicosatetraenoicos , Glicerofosfolipídeos , Receptores de Antígenos de Linfócitos B , Dieta Hiperlipídica/efeitos adversos
16.
Annu Rev Nutr ; 42: 67-89, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995048

RESUMO

The COVID-19 pandemic demonstrates that obesity alone, independent of comorbidities, is a significant risk factor for severe outcomes from infection. This susceptibility mirrors a similar pattern with influenza infection; that is, obesity is a unique risk factor for increased morbidity and mortality. Therefore, it is critical to understand how obesity contributes to a reduced ability to respond to respiratory viral infections. Herein, we discuss human and animal studies with influenza infection and vaccination that show obesity impairs immunity. We cover several key mechanisms for the dysfunction. These mechanisms include systemic and cellular level changes that dysregulate immune cell metabolism and function in addition to how obesity promotes deficiencies in metabolites that control the resolution of inflammation and infection. Finally, we discuss major gaps in knowledge, particularly as they pertain to diet and mechanisms, which will drive future efforts to improve outcomes in response to respiratory viral infections in an increasingly obese population.


Assuntos
COVID-19 , Influenza Humana , Animais , Humanos , Imunidade , Influenza Humana/prevenção & controle , Obesidade , Pandemias , Vacinação
17.
Adv Nutr ; 13(6): 2316-2328, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-35709423

RESUMO

Dysregulation of glucose metabolism in response to diet-induced obesity contributes toward numerous complications, such as insulin resistance and hepatic steatosis. Therefore, there is a need to develop effective strategies to improve glucose homeostasis. In this review, we first discuss emerging evidence from epidemiological studies and rodent experiments that increased consumption of EPA (either as oily fish, or dietary/pharmacological supplements) may have a role in preventing impairments in insulin and glucose homeostasis. We then review the current evidence on how EPA-derived metabolites known as hydroxyeicosapentaenoic acids (HEPEs) may be a major mode of action by which EPA exerts its beneficial effects on glucose and lipid metabolism. Notably, cell culture and rodent studies show that HEPEs prevent fat accumulation in metabolic tissues through peroxisome proliferator activated receptor (PPAR)-mediated mechanisms. In addition, activation of the resolvin E1 pathway, either by administration of EPA in the diet or via intraperitoneal administration of resolvin E1, improves hyperglycemia, hyperinsulinemia, and liver steatosis through multiple mechanisms. These mechanisms include shifting immune cell phenotypes toward resolution of inflammation and preventing dysbiosis of the gut microbiome. Finally, we present the next steps for this line of research that will drive future precision randomized clinical trials with EPA and its downstream metabolites. These include dissecting the variables that drive heterogeneity in the response to EPA, such as the baseline microbiome profile and fatty acid status, circadian rhythm, genetic variation, sex, and age. In addition, there is a critical need to further investigate mechanisms of action for HEPEs and to establish the concentration of HEPEs in differing tissues, particularly in response to consumption of oily fish and EPA-enriched supplements.


Assuntos
Fígado Gorduroso , Resistência à Insulina , Animais , Humanos , HEPES/metabolismo , Obesidade/complicações , Fígado Gorduroso/complicações , Fígado Gorduroso/metabolismo , Fígado Gorduroso/prevenção & controle , Glucose/metabolismo , Homeostase , Dieta Hiperlipídica , Fígado/metabolismo
18.
FASEB J ; 36(6): e22354, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35616343

RESUMO

Resolvin E1 (RvE1), a specialized pro-resolving mediator (SPM), improves glucose homeostasis in inbred mouse models of obesity. However, an impediment toward translation is that obesity is a highly heterogenous disease in which individuals will respond very differently to interventions such as RvE1. Thus, there is a need to study SPMs in the context of modeling the heterogeneity of obesity that is observed in humans. We investigated how RvE1 controls the concentration of key circulating metabolic biomarkers using diversity outbred (DO) mice, which mimic human heterogeneity. We first demonstrate that weights of DO mice can be classified into distinct distributions of fat mass (i.e., modeling differing classes of obesity) in response to a high-fat diet and in the human population when examining body composition. Next, we show RvE1 administration based on body weight for four consecutive days after giving mice a high-fat diet led to approximately half of the mice responding positively for serum total gastric inhibitory polypeptide (GIP), glucagon, insulin, glucose, leptin, and resistin. Interestingly, RvE1 improved hyperleptinemia most effectively in the lowest class of fat mass despite adjusting the dose of RvE1 with increasing adiposity. Furthermore, leptin levels after RvE1 treatment were the lowest in those mice that were also RvE1 positive responders for insulin and resistin. Collectively, these results suggest a therapeutic fat mass-dependent window for RvE1, which should be considered in future clinical trials. Moreover, the data underscore the importance of studying SPMs with heterogenous mice as a step toward precision SPM administration in humans.


Assuntos
Ácido Eicosapentaenoico , Obesidade , Animais , Camundongos de Cruzamento Colaborativo , Modelos Animais de Doenças , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Glucose , Humanos , Insulinas , Leptina , Camundongos , Obesidade/tratamento farmacológico , Resistina
19.
J Nutr ; 152(7): 1783-1791, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35349683

RESUMO

BACKGROUND: Specialized pro-resolving mediators (SPMs), synthesized from PUFAs, resolve inflammation and return damaged tissue to homeostasis. Thus, increasing metabolites of the SPM biosynthetic pathway may have potential health benefits for select clinical populations, such as subjects with obesity who display dysregulation of SPM metabolism. However, the concentrations of SPMs and their metabolic intermediates in humans with obesity remains unclear. OBJECTIVES: The primary objective of this study was to determine if a marine oil supplement increased specific metabolites of the SPM biosynthetic pathway in adults with obesity. The second objective was to determine if the supplement changed the relative abundance of key immune cell populations. Finally, given the critical role of antibodies in inflammation, we determined if ex vivo CD19 + B-cell antibody production was modified by marine oil intervention. METHODS: Twenty-three subjects [median age: 56 y; BMI (in kg/m2): 33.1] consumed 2 g/d of a marine oil supplement for 28-30 d. The supplement was particularly enriched with 18-hydroxyeicosapentaenoic (HEPE), 14-hydroxydocosahexaenoic acid (14-HDHA), and 17-HDHA. Blood was collected pre- and postsupplementation for plasma mass spectrometry oxylipin and fatty acid analyses, flow cytometry, and B-cell isolation. Paired t-tests and Wilcoxon tests were used for statistical analyses. RESULTS: Relative to preintervention, the supplement increased 6 different HEPEs and HDHAs accompanied by changes in plasma PUFAs. Resolvin E1 and docosapentaenoic acid-derived maresin 1 concentrations were increased 3.5- and 4.7-fold upon intervention, respectively. The supplement did not increase the concentration of D-series resolvins and had no effect on the abundance of immune cells. Ex vivo B-cell IgG but not IgM concentrations were lowered postsupplementation. CONCLUSIONS: A marine oil supplement increased select SPMs and their metabolic intermediates in adults with obesity. Additional studies are needed to determine if increased concentrations of specific SPMs control the resolution of inflammation in humans with obesity. This trial was registered at clinicaltrials.gov as NCT04701138.


Assuntos
Ácidos Graxos Ômega-3 , Adulto , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos , Humanos , Inflamação , Mediadores da Inflamação , Pessoa de Meia-Idade , Obesidade , Plasma
20.
J Leukoc Biol ; 111(1): 147-159, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33847405

RESUMO

Obesity is an independent risk factor for morbidity and mortality in response to influenza infection. However, the underlying mechanisms by which obesity impairs immunity are unclear. Herein, we investigated the effects of diet-induced obesity on pulmonary CD8+ T cell metabolism, cytokine production, and transcriptome as a potential mechanism of impairment during influenza virus infection in mice. Male C57BL/6J lean and obese mice were infected with sub-lethal mouse-adapted A/PR/8/34 influenza virus, generating a pulmonary anti-viral and inflammatory response. Extracellular metabolic flux analyses revealed pulmonary CD8+ T cells from obese mice, compared with lean controls, had suppressed oxidative and glycolytic metabolism at day 10 post-infection. Flow cytometry showed the impairment in pulmonary CD8+ T cell metabolism with obesity was independent of changes in glucose or fatty acid uptake, but concomitant with decreased CD8+ GrB+ IFNγ+ populations. Notably, the percent of pulmonary effector CD8+ GrB+ IFNγ+ T cells at day 10 post-infection correlated positively with total CD8+ basal extracellular acidification rate and basal oxygen consumption rate. Finally, next-generation RNA sequencing revealed complex and unique transcriptional regulation of sorted effector pulmonary CD8+ CD44+ T cells from obese mice compared to lean mice following influenza infection. Collectively, the data suggest diet-induced obesity increases influenza virus pathogenesis, in part, through CD8+ T cell-mediated metabolic reprogramming and impaired effector CD8+ T cell function.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vírus da Influenza A/imunologia , Pulmão/imunologia , Obesidade/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Humanos , Imunidade , Vírus da Influenza A/fisiologia , Influenza Humana/complicações , Influenza Humana/imunologia , Influenza Humana/metabolismo , Pulmão/metabolismo , Pulmão/virologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/complicações , Obesidade/metabolismo , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...